
Asim 2016, The 3rd Asia conference of International Building Performance Simulation Association 

A METHOD OF SYSTEM IDENTIFICATION AND ITS 

APPLICATION IN HVAC SYSTEMS 

 

 

D.L.Hou1, Y.Q.Pan1 and Z.Z.Huang2 

 
1School of Mechanical Engineering, Tongji University, 
Shanghai 201804, China, 
2Sino-German College of Applied Sciences, Tongji University,  
Shanghai, China 
 
 
ABSTRACT 
The operation effect of industrial process is largely determined by the automatic control 
system. In the conventional control process, the Proportional Integral and Derivative 
(PID) parameters need to be set according to the engineering experience. Not only is 
the control precision not enough, but also the robustness is poor. The performance of 
PID control based on the system transfer function is relatively good. However, it is 
usually limited by the accuracy of transfer functions. In this paper, a method based on 
PSO is studied for the identification of Heating, Ventilating and Air Conditioning 
(HVAC) system. By simplification the transfer function as a second order plus dead 
time model, using Particle Swarm Optimization (PSO) algorithm optimizes the 
parameters of the model to obtain the minimum differentiation between the outputs of 
the system and the model. Two examples are given to show this method is simple and 
results are accurate.  
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INTRODUCTION 

As it is well known, in many fields of process industry, PID controller is the most widely 
used control algorithm (Skogestad S 2001). It can date to 1890s governor design 
(Bennett S 1984, Bennett S 1993) and has been around for a long time. Today, more 
than 90% of all controllers are PID (Åström K J and Hägglund T 2001). This 
widespread application of PID in process industry can be result from their simplicity 
and ease of re-tuning on-line (Astrom K J 1995).  
 

In fact, there are two methods to determine parameters of PID. One is called 
engineering experience tuning method which is depended on rich experience of an 
engineer. The other is tuning rules based on transfer function of the objective system 
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(Ziegler J G and Nichols N B 1942, Cohen G H and Coon G A 1953, Tyreus B D and 
Luyben W L 1992, Ho W K et al. 1998). Though the performance of the second method 
is always better than that of the first one, to find a precise transfer function of the tuning 
system is really a difficulty. Only three parameters although the PID controller has, it 
is not easy to find excellent values for them without a systematic procedure. For the 
most part, a visit to a process factory will usually demonstrate that a large number of 
the PID controllers work with poor performance. The reasons of this phenomenon could 
be attributed to lack of experience, low accuracy of the first tuning method, poor 
robustness of PID values, complexity of an industry system and unseemliness of the 
transfer function.  
 

The process of investigation of a transfer function by using a mathematical model, as 
shown in Fig.1, to describe the system over a wide operation range is called system 
identification which acts as foundation of control theory. A great number of papers 
focus on the method of system identification (Hsia T C 1977, Ljung L 1998, Sjöberg J 
and Zhang Q 1995, Ljung L 1998, Ding F and Chen T 2004)and the similarity of them 
is the adoption of inverse matrix. As we know, the large calculation amount, long 
computing time and high demands on compute devices are fatal shortages of these kinds 
of method. 
 

   

A practical 
system

Model G

 
Fig.1 Identification principle 

 
With the development of intelligent algorithms, such as Simulated Annealing (SA) 
(Kirkpatrick S 1984, Szu H and Hartley R 1987, Hwang C R 1988, Ingber L 1989, 
Eglese R W 1990), Genetic Algorithm (GA) (Mosetti G et al. 1994, Houck C R et al. 
1995, Beasley J E and Chu P C 1996), Artificial Neural Networks (ANNs) (Hopfield J 
J 1988, Zurada J M 1992, Patterson D W 1998, Yao X 1999, Dayhoff J E and DeLeo J 
M 2001, Yegnanarayana B 2009), they are used more and more widely. An approach of 
system identification based on PSO is proposed and the application of this method is 
explored in this paper. Giving two examples of this identification method, it is 
concluded that the system identification based on PSO has stronger adaptability and 
better robustness. 
 
METHODOLOGY 
1. BASIC IDEA OF SYSTEM IDENTIFICATION 
1.1 TRANSFER FUNCTION STRUCTURE OF MODEL G 
The transfer function structure is pretty complex and more than fourth-order model. It 
will consume much time and computational equipment expense to identify such 

R(t) 

Cs(t) 

Cm(t) 
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complicated function. In consideration of precision demands and calculating speed, the 
transfer function structure of model G is second-order plus dead-time model. 
 

G(s)=
k

(τ1s+1)(τ2s+1)
e-θs                                                         (4) 

 

where τ1、τ2、k and θ are identification parameters. 

 
1.2 OUTPUT OF MODEL G 
Real-number encoding was utilized in this paper. With the unit step signal input and a 
second-order plus dead-time model, the output could be represented as: 
 

Cm s =R s ×G s =
1

s
·

k

(τ1s+1)(τ2s+1)
e-θs                                           (5) 

 

After the Laplace inverse transform of equation (5), in time domain, the output function 
of model G is presented as following: 
 

Cm t =0，t<θ                                                        (6) 

 

Cm t =k× 1+
τ1τ2

τ2-τ1
×

1

τ2
e

-
t-θ
τ1 -

1

τ1
e

-
t-θ
τ2 ，t≥θ                                 (7) 

 
1.3 OBJECTIVE FUNCTION 
When estimating values of transfer function parameters of model G are optimal, output 
curves of Cs t  and Cm(t) should be overlap mostly. Draw lessons from the concept 
of statistical sample standard deviation, output sample standard deviation Svalue and 

slope sample standard deviation Sslope are defined. 

 

Svalue=
∑ (Cs t -Cm(t))2tn·tf

t=0·tf

tn-1
                                            (8) 

 

where tf is system output time step; tn is number of system output time step; Cs(t) 

and Cm(t) are the system output value and calculated value at t point. 
 

Sslope=
∑ (Ks t -Km(t))2tn·tf

t=1·tf

tn-2
                                            (9) 
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where tf is system output time step; tn is system output time steps; Cs(t) and Cm(t) 

are the system output value and calculated value at t point. Ks(t) and Km(t) are the 

slope values of system and model G during a particular time period of (t-tf). The 

calculated formula of K(t)is: 
 

K t =
C t -C(t-tf)

tf
                                                   (10) 

 

The objective function used in this paper is: 
 

F=Svalue×Sslope                                                   (11) 

 
2. PSO USED IN SYSTEM IDENTIFICATION 
2.1 BRIEF INTRODUCTION OF PSO 
In 1995, when they were studying bird behaviors of searching food, American 
psychologist Kennedy and electrical engineer Eberhart found that each member could 
benefit from all the other members’ discoveries and flight experiences by sharing 
information between individuals. PSO is put forward based on this (Eberhart R C and 
Kennedy J 1995). This is another kind of swarm intelligence algorithm after ant colony 
algorithm (ACO) and widely researched and applied in many fields (Song M P and Gu 
G C 2004, Barrera J and Coello C A C 2009, García-Gonzalo E and Fernández-Martínez 
J L 2012). 
 
In PSO each potential solution for an optimization problem is viewed as a particle 
without mass and volume in the search space. A number of particles form a population. 
Every particle’s performance depends on the objective function of the optimization 
problem. Each particle then determines its movement through the search space by 
combining some aspect of the history of its own current and best (best-fitness) locations 
with those of one or more members of the swarm, with some random perturbations. The 
next iteration takes place after all particles have been moved. Eventually the swarm as 
a whole, like a flock of birds collectively foraging for food, is likely to move close to 
an optimum of the fitness function. For example, the position and velocity of particle i 
could expressed as: 
 
Xi t =[xi,1 t ,xi,2 t ,…,xi,D t ]                                         (12) 
 
Vi t =[vi,1 t ,vi,2 t ,…,vi,D t ]                                         (13) 

 

By comparing the fitness value of the objective function of each particle, the best 

position of each particle Pbest i t =[pi,1 t ,pi,2 t ,…,pi,D t ] and the best position in the 
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group Pg  are obtained. In the next iteration, the particle is updates its speed and 

position according to the following formulas: 
 

vi,j t+1 =wvi,j t +c1r1 pi,j t -xi,j t +c2r2 pg,j t -xi,j t                    (14) 

 

xi,j t+1 =xi,j t +vi,j t+1 ,  i=1,…,n;j=1,…,D                            (15) 

 
where w is inertia factor, c1 and c2 are positive acceleration constants, r1 and r2 are 
random numbers between 0 and 1. 
 
2.2 IMPLEMENTATION PROCESS OF SYSTEM IDENTIFICATION BASED ON 
PSO 
1) Initialize a population array of particles with random velocities and positions on D 

dimensions in the search space 
2) For each particle, the position information initialized in process 1) is stored in Pbest,i. 

The best Pbest,i is viewed as Pg 
3) loop 
4) Calculate output of models and fitness value of objective function according to the 

position of each particle 
5) Compare fitness evaluation of a particle with its Pbest,i. If current value is better 

than Pbest,i, then set Pbest,i equal to the current location 
6) Compare particle’s Pbest,i with Pg. If Pbest,i is better than Pg, then Pg is replaced by 

Pbest,i 
7) Update position and velocity of each particle according to Equs (14) and (15) 
8) If a criterion is satisfied (usually a sufficiently good fitness value or a maximum 

iteration), exit loop 
9) End loop 
 
SIMULATION EXAMPLE 
In fact, the transfer function of an object in an HVAC system is nonlinear, complex and 
high-order. Also, noise must be taken into account.  
Example 1. The system structure is a fourth-order without time delay model: 
 

G s =
5

5s+1 10s+1 20s+1 30s+1
                                         (16) 

 

Under the conditions of unit step signal input, time step is 10, number of time step is 
20, system output without noise Cs and system output with noise level of 5% Cs-n are 
shown in Table 1. 
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Table 1. System output of Example 1 (without noise and with noise) 

t 0 10 20 30 40 50 60 70 80 90 100 

Cs 0.00 0.03 0.28 0.77 1.40 2.06 2.66 3.18 3.61 3.95 4.22 

Cs-n 0.000 0.034 0.290 0.746 1.389 2.107 2.703 3.107 3.635 3.784 4.323 

t 110 120 130 140 150 160 170 180 190 200 -- 

Cs 4.42 4.57 4.69 4.77 4.83 4.88 4.91 4.94 4.95 4.97 -- 

Cs-n 4.405 4.441 4.517 4.536 4.607 5.120 5.134 4.821 5.019 4.966 -- 

 

The parameters setting of PSO are: c1= c2=1.4962, biggest iteration is 200, initial 
population number is 40, particle dimension D=4, linear descend inertia weight ranges 
from 0.9 to 0.4. Cs-n as input of the objective function, Cs as the comparison of model 
G output Cm. Fitting formula is: 
 

G s =
5.1

(38.3s+1)(18.6s+1)
e-11.1s                                            (17) 

 
Fitting results are shown in Fig. 2, the system output standard deviation is 0.0401, under 
the consideration of Cs. 

 
Fig. 2 Fitting results of Example 1 

 

Example 2. The system structure is a fourth-order without time delay model: 
 

s =
2.4

(0.6s+1)(2s+1)(7s+1)(20s+1)
                                           (18) 

 
Under the conditions of unit step signal input, time step is 5, number of time step is 20, 
system output without noise Cs and system output with noise level of 5% Cs-n are shown 
in Table 2. 
 
Table 2. System output of Example 2 (without noise and with noise) 

t 0 5 10 15 20 25 30 35 40 45 50 

 0.00 0.03 0.28 0.77 1.40 2.06 2.66 3.18 3.61 3.95 4.22 

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

O
ut

pu
t

Time(s)

System identification based on PSO

Cs-n
Cs
Cm



Asim 2016, The 3rd Asia conference of International Building Performance Simulation Association 

 0.000 0.034 0.290 0.746 1.389 2.107 2.703 3.107 3.635 3.784 4.323 

t 55 60 65 70 75 80 85 90 95 100 -- 

 4.42 4.57 4.69 4.77 4.83 4.88 4.91 4.94 4.95 4.97 -- 

 4.405 4.441 4.517 4.536 4.607 5.120 5.134 4.821 5.019 4.966 -- 

 

The parameters setting of PSO are the same as them in Example 1. Cs-n as input of the 
objective function, Cs as the comparison of model G output Cm. Fitting formula is: 
 

G s =
2.4

(14.9s+1)(11.0s+1)
e-1.9s                                             (19) 

 
Fitting results are shown in Fig. 3, the system output standard deviation is 0.0094, under 
the consideration of Cs. 
 

 
Fig.3 Fitting results of Example 2 

 
Simulation results indicate that the method of system identification based on PSO not 
only has the advantages of simple process, but also high precision and quick calculating 
speed. 
 
CONCLUSION 
System identification is the basis of control theory and state estimation. Identification 
results have a direct impact on subsequent control results. PSO is a simple and fast 
algorithm and has been widely used in optimization problems in different fields. In this 
paper, PSO is applied in the field of system identification of HVAC system. From the 
simulation results, we can conclude that this method has good adaptability, robustness 
and application prospect in HVAC system. 
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